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Traveling wave modes of a plane layered anelastic earth

Robert I. Odom

Applied Physics Laboratory and Department of Earth and Space Sciences

University of Washington, 1013 NE 40th St., Seattle, WA 98105

Summary. Incorporation of attenuation into the normal mode sum representations of seismic

signals is commonly effected by applying perturbation theory. This is fine for weak attenuation, but

problematic for stronger attenuation. In this work modes of the anelastic medium are represented

as complex superpositions of elastic eigenfunctions. For the P-SV system a generalized eigenvalue

equation for the complex eigenwavenumbers and complex coefficients used to construct the anelastic

eigenfunctions is derived. The generalized eigenvalue problem for the P-SV problem is exactly

linear in the eigenwavenumber at the expense of doubling the dimension. The SH problem is exactly

linear in the square of the eigenwavenumber. This is in contrast to a similar standing wave problem

for the earth free oscillations (Tromp and Dahlen, 1990). Attenuation is commonly incorporated into

synthetic seismogram calculations by introduction of complex frequency dependent elastic moduli.

The moduli depend nonlinearly on the frequency. The independent variable in the standing wave

free oscillation problem is the frequency, which makes the eigenvalue problem nonlinear. The

choice of the wavenumber as the independent variable for the traveling wave problem leads to a

linear problem. The Earth model may be transversely isotropic. Compressional waves, and both

polarizations of shear waves (SV, SH) are treated.

Key words: Seismic attenuation; Seismic anisotropy; Surface waves and free oscillations; Theo-

retical seismology, Wave propagation
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1. Introduction

A surface-wave seismic or shallow-water ocean seismo-acoustic signal can be conveniently repre-

sented as a linear superposition of orthogonal modes for moderately low frequencies. Our definition

of “moderately low” is model dependent, by which we mean that the model is a “few” wavelengths

thick. A “few” is somewhat arbitrary, but may be as many as 100. The main point is that the

frequency content of the signal is not high enough to justify using ray theory.

When modal representations of the seismic or seismo-acoustic wave-field have been applied

to surface-waves of the solid Earth or shallow water sound propagation by the ocean acoustics

community, it has been fairly common practice to include the effects of attenuation as a first order

perturbation to modal eigenvalues (e.g. Ingenito, 1973; Aki and Richards, 1980; Zhou, 1985). First

order perturbation theory ignores anelastic coupling between modes and requires that k/(Qδk)� 1

where k is the unperturbed wavenumber, δk is the unperturbed wavenumber spacing and Q is the

spatial quality factor. Because at low frequencies a significant fraction of a shallow water seismo-

acoustic or regional seismic signal may propagate in low Q bottom sediments, or low shear Q upper

mantle k/(Qδk) can be O(1). This makes the use of perturbation theory invalid, and can introduce

serious errors in mode sum acoustic signal synthesis. Ewing et al. (1992) report shear Q values

in the range 20 - 50 for continental shelf sediments off the New Jersey. Lebedev and Nolet (2003)

found shear Q as low as 40 in the upper mantle.

The severity of the error resulting from the improper treatment of attenuation in mode sum

signal synthesis has been graphically illustrated by Day et al. (1989). Day et al. (1989) calculated

synthetic seismograms for stratified models consisting of a high Q layer over a layered half space.

The shear Q of the underlying half space was lower than the Q in the overlying layer, and half space

shear speeds were lower than the compressional wave speed in the overlying layer. The signals

calculated from modal summation dramatically overestimate the effect of the low shear Q on the

complete signal. The mode summation results were compared with the results from a wavenumber
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integration routine (Apsel, R.J. and J.E. Luco, 1983), that is similar to SAFARI/OASES (Schmidt

and Tango, 1986) in common use in ocean acoustics. Serious errors in the mode sum seismograms

are traced by Day et al. (1989) to the way in which perturbation theory is applied to treat the anelastic

problem. Specifically, the difficulty occurs with the use of the unperturbed elastic eigenfunctions

in the anelastic problem. Because the problem is with the eigenfunctions themselves, it cannot

be repaired with higher order perturbation corrections to the eigenvalues. The problem does not

appear when using wavenumber integration routines, because the attenuation is incorporated directly

through the use of complex, frequency dependent compressional and shear speeds.

If one wishes to retain the physical insight inherent in a modal representation of the wave-field,

and properly incorporate the effects of anelasticity, one approach is to invoke the correspondence

principle (e.g. Leitman and Fisher, 1973), and solve for the anelastic modes directly. The corre-

spondence principle states that the equations of motion for a linear viscoelastic material are just

the equations for a perfectly elastic material with the elastic moduli replaced with the complex,

frequency dependent anelastic moduli. The anelastic moduli must be frequency dependent and

satisfy the Kramers-Kronig relations to preserve causality.

The correspondence principle approach has been used by Yuen and Peltier (1982) and Buland et

al. (1985) to model aspects of the free oscillations of the whole earth. To a limited extent, it has also

been applied to shallow water propagation problems. Bucker and Morris (1965) employed the cor-

respondence principle to solve for the anelastic eigenwavenumbers, and model the propagation loss

for a shallow water problem with a fairly simple structure. It is standard procedure in wavenumber

integration approaches to wave-field modeling, e.g. Apsel, R.J. and J.E. Luco, (1983), Schmidt

and Tango (1986) where arbitrary attenuation is incorporated by introducing complex, frequency

dependent elastic moduli.

There has been work on directly solving for the complex modes of a plane layered fluid-elastic

medium. Ivansson and Karasalo (1992, 1993) and Ivansson (1997) have published a numerical

algorithm based on the winding number theorem from complex analysis to directly search for the
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poles of the anelastic modes in the complex plane. The complex plane is tiled with boxes, and

contour integrals are performed numerically around each box. They determine the number of poles

within each box, and iteratively refine the search until each box contains a single pole. A final

refinement is effected by switching to polar coordinates, and integrating around circular contours

to more precisely isolate the anelastic mode eigenvalues.

We adopt a different approach in that we represent the anelastic modes as a complex superpo-

sition of elastic eigenfunctions. The effects due to anelastic mode coupling are explicitly included

and there is no restriction on the magnitude of the damping. Our approach is a traveling wave

adaptation of Tromp and Dahlen (1990), who derived an elegant solution for the free oscillations

of an anelastic spherical earth in terms of the elastic eigenfunctions and eigenfrequencies.

We have derived a generalized eigenvalue equation for the complex eigenwavenumbers and

complex coefficients used in the superposition of the elastic eigenfunctions to construct the anelas-

tic eigenfunctions. Our generalized eigenvalue equation is strictly linear for the complex anelastic

eigenwavenumbers. This is in contrast to the nonlinear eigenvalue equation for the anelastic eigen-

frequencies of the free oscillations of the earth (Dahlen, 1981; Tromp and Dahlen, 1990). The

reason for this difference is our choice of the frequency ω as the independent variable in the dis-

persion relation. Because of the standing wave nature of the earth free oscillation problem, ω is

taken as the dependent variable in the dispersion relation. Since the anelastic moduli are frequency

dependent, the eigenvalue equation for the anelastic free oscillations is nonlinear. Our derivation

also includes the effects of vertical transverse isotropy, which has a single vertical axis of symmetry.

A particular feature of transversely isotropic media is that the P-SV motion still decouples from

the SH motion. This is not true for more general anisotropy. The case of transverse isotropy is

particularly relevant for bottom-interacting shallow water sound propagation. Berge et al.(1991)

felt that additional azimuthal anisotropy induced by ripples in the sediment surface or cracks would

be very weak.

Bottom-interacting shallow water sound propagation requires special handling of the fluid-
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solid interface in the P-SV problem. There are no inherent difficulties in treating this interface. The

procedure is straightforward and discussed in the next section of the manuscript.

We include the SH problem for completeness, but discuss it only briefly. The derivation of the

generalized eigenvalue equation for the anelastic eigenwavenumbers will be sketched.

2. Definitions and notation

We adopt the notational conventions of Takeuchi and Saito (1972), who treat seismic surface-waves

and free oscillations explicitly for a transversely isotropic Earth. Our coordinate system is a right

handed coordinate system with the propagation direction along the x axis, y positive into the paper,

and z positive upward. As mentioned the P-SV (Rayleigh) motion decouples from the SH (Love)

motion. The perfectly elastic displacements ui and stresses σi j for P-SV are

ux = −i y3(z;ω,k)ei(ωt−kx)

uy = 0 (1)

uz = y1(z;ω,k)ei(ωt−kx)

and

σxx =

(
F

dy1

dz
− kAy3

)
ei(ωt−kx)

σyy =

(
F

dy1

dz
− k(A − 2N)y3

)
ei(ωt−kx)

σzz = y2ei(ωt−kx) (2)

σzx = −i y4ei(ωt−kx)

σyz = σxy = 0.
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The boundary conditions on the yi for P-SV are

yi ( i = 1, 2, 3, 4) continuous

y2 = y4 = 0 at the free surface z = 0 (3)

yi ( i = 1, 2, 3, 4) → 0 as z → −∞.

The displacements and stress for SH motion are

ux = uz = 0

uy = y1(z;ω,k)ei(ωt−kx) (4)

and

σyz =

(
L

dy1

dz

)
ei(ωt−kx)

σxy = −i k Ny1ei(ωt−kx) (5)

σxx = σyy = σzz = σzx = 0.

In addition, we introduce the definition for y2 so that

σyz = y2ei(ωt−kx) = L
dy1

dz
ei(ωt−kx) (6)

The boundary conditions for the yi for SH are

y1,y2 continuous

y2 = 0 at the free surface z = 0 (7)

y1,y2 → 0 as z → −∞.

ω is the real angular frequency, ρ is the density, k is the horizontal wavenumber for a perfectly

elastic medium, and A, C, F, L and N are the five elastic moduli in Love’s (1944) notation necessary
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to characterize a transversely isotropic medium. When

A = C = λ + 2 µ L = N = µ F = λ (8)

the medium is isotropic.

Fluid layers and the boundary between fluid and solid layers require special treatment since fluids

do not support shear. In the fluid

A = C = F = λ L = N = 0 (9)

The displacements and stresses in the fluid are

ux = −i y3(z;ω,k)ei(ωt−kx) = i
k

ω2ρ
y2ei(ωt−kx)

uy = 0 (10)

uz = y1(z;ω,k)ei(ωt−kx)

and

σxx = λ

(
dy1

dz
− ky3

)
ei(ωt−kx)

σzz = y2ei(ωt−kx) (11)

σzx = −i y4ei(ωt−kx)

σyy = σyz = σxy = 0.

The boundary conditions on the yi for fluids are

yi ( i = 1, 2) continuous at the fluid− solid boundary

y3 = − k
ω2ρ

y2 in the solid at the fluid− solid boundary (12)

y4 = 0 in the fluid and at the fluid− solid boundary in the solid .
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In order to minimize the notational overhead, we make no distinction between the yi’s for the

P-SV and SH problems. We will concentrate mainly on the P-SV problem. The meaning of the

yi’s will be clear from context. The P-SV and SH problems are treated separately since they do

not couple in transversely isotropic media with a vertical symmetry axis. The above equations of

motion for a perfectly elastic medium may be represented in first order form as

∂zbR,L = MR,L bR,L, (13)

where the subscripts R (Rayleigh), L (Love) indicate whether we are referring to the P-SV, Eq. (1)

- (3), or the SH, Eq. (4) - (7), systems of equations. The vectors bR,L and the matrices MR,L are

defined for P-SV motion as

bR = (y1,y2,y3,y4 )
T (14)

and

MR =



0 C−1 kF/C 0

−ω2ρ 0 0 k

−k 0 0 L−1

0 −kF/C
[
k2 (A−F2/C

)
−ω2ρ

]
0


, (15)

for SH motion as

bL = (y1,y2 )
T (16)

and
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ML =

 0 L−1(
k2N−ω2ρ

)
0

 , (17)

and for fluids as

bFluid = (y1,y2 )
T (18)

and

MFluid =

 0
(

1
λ
− k2

ω2ρ

)
−ω2ρ 0

 . (19)

From this point on, we drop the subscripts R, L, and Fluid on the vector b and the matrix M. It will

be apparent from context which system we mean. The following development will be for the P-SV

system. Analogous results for the SH system are summarized at the end of the paper. The details

of incorporating fluid-solid boundaries are well known. Excellent treatments are in Takeuchi and

Saito (1972) and Aki and Richards (1980, pp280-281).

There are inherent symmetries in the equations of motion (Kennett et al., 1978 and Thomson et

al., 1986) that can be exploited to construct compact expressions useful for very efficiently deriving

the elastic wave dispersion relation, orthogonality relationships and other quantities. Define the

matrices R, S, ΛΛΛ and ΞΞΞ as

R =

ΛΛΛ 0

0 ΛΛΛ

 and S =

ΞΞΞ 0

0 ΞΞΞ

 , (20)
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and

ΛΛΛ =

 0 1

−1 0

 and ΞΞΞ =

0 1

1 0

 . (21)

Using the matrices defined above, we can form various compositions of two stress-displacement

fields. For example for P-SV, we can form

∂z(bT Sb) = bT [MT S + SM
]

b (22)

whereby we operate from the left and the right with the same stress displacement vector b. The

perfectly elastic modes are then bm for m = 0,1,2, ...,∞. The completeness of the bm for the case

of a plane layered medium with a free surface and a rigid lower boundary has been proved by

Kirrmann(1995). The only approximation is that in any practical implementation, we employ a

finite number of modes. When both sides are integrated with respect to z from −∞ to 0, we obtain

the dispersion relation for Rayleigh waves in a transversely isotropic medium (Aki and Richards,

1980).

ω
2I1 = k2I2 + kI3 + I4 (23)

where

I1 =
∫ 0

−∞

ρ(y1
2 + y3

2)dz (24)

I2 =
∫ 0

−∞

(Ly1
2 + Ay3

2)dz (25)

I3 = 2
∫ 0

−∞

(
Ly1

dy3

dz
− Fy3

dy1

dz

)
dz (26)

I4 =
∫ 0

−∞

(
C

dy1

dz

2
+ L

dy3

dz

2)
dz. (27)
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The left hand side of Eq.(22) is a perfect differential in z, and after integration it vanishes when the

boundary conditions are applied.

3. Derivation of the generalized eigenvalue equation

The complex generalized eigenvalue equation for the complex eigenwavenumbers is derived in

a straightforward manner. Invoking the correspondence principle, we represent the equations of

motion for an anelastic transversely isotropic medium as

∂zc = M̃c (28)

where c and M̃ represent the stress-displacement vector and wave operator matrix, respectively for

anelastic media. For our definition of M̃, we take

M̃ =



0 C̃−1 κF̃/C̃ 0

−σ2ρ 0 0 κ

−κ 0 0 L̃−1

0 −κF̃/C̃
[
κ2 (Ã − F̃2/C̃

)
−σ2ρ

]
0


. (29)

The symbols Ã, C̃, F̃, L̃ and Ñ are the five complex frequency dependent elastic moduli for an

anelastic transversely isotropic solid; κ is the eigenwavenumber for the anelastic solid; σ is the

frequency, which we take to be real for propagating waves.

We take

c = cn (30)

where cn is an eigenfunction of the anelastic medium and is a solution of Eq. (28). In addition, we
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represent cn as a complex linear superposition of the eigenfunctions of the perfectly elastic problem

cn =
∞

∑
m=0

Qmnbm. (31)

Qmn is the matrix of complex coefficients that transforms the elastic eigenfunctions bm to the

anelastic solutions.

Employing the matrix R defined above, we form the composition of an anelastic mode cn as

represented by Eq. (31) and an elastic mode bn

∂z(bT
n Rcn ) = bT

n
[

MT R + RM̃
]

cn, (32)

and integrate over z from −∞ to 0. The elastic and anelastic problems satisfy the same boundary

conditions, so the left hand side of Eq. (32) vanishes after the integration. By assuming that the

elastic eigenfunction bn and the anelastic eigenfunction cn have the same real frequency so that

ω
2 = σ

2, (33)

we arrive at the following infinite generalized quadratic eigenvalue equation for the anelastic eigen-

wavenumbers κn

Aqn + κn Bqn + κ
2
n Cqn = 0 (34)

where

A = −
∫ 0

−∞

{
k2

n
(
A − F2/C

)
y3

(n)y3
(m)
}
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+ kn

[(
y1

(n)y4
(m) + y4

(n)y1
(m)
)
− F

C

(
y2

(n)y3
(m) + y3

(n)y2
(m)
)]

,

−
(
C−1 − C̃−1)y2

(n)y2
(m) −

(
L−1 − L̃−1)y4

(n)y4
(m)
}

dz, (35)

B =
∫ 0

−∞

[(
y1

(n)y4
(m) + y4

(n)y1
(m)
)
− F̃

C̃

(
y2

(n)y3
(m) + y3

(n)y2
(m)
)]

dz, (36)

C =
∫ 0

−∞

[(
Ã − F̃2/C̃

)
y3

(n)y3
(m)
]

dz. (37)

As Eq. (38) shows, the eigenvectors qn are the columns of the matrix Q

Q = ( . . ., qn, . . .). (38)

By making the assignment

Irn = κn Iqn, (39)

the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized

eigenvalue problem (Garbow et al., pp.49-50, 1977) at the expense of doubling the dimension of

the system

0 I

A B


qn

rn

 = κn

I 0

0 −C


qn

rn

 . (40)

Equation (40) is the main result of this note. The solution of this linear generalized matrix eigen-

value problem yields the complex eigenwavenumbers κn for the modes of an anelastic transversely

isotropic medium and the eigenvectors qn. As Eq.(38) shows, the eigenvectors qn of Eq. (40) are

the columns of the transformation matrix Qmn used to construct the anelastic eigenfunctions from

the elastic eigenfunctions from Eq. (31). The linearity of Eq. (40) is an important point and should

be contrasted with the result derived by Tromp and Dahlen (1990) for the free oscillations of the
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earth. Their equation (3.5) is

[
ΩΩΩ

2 + V(σk)
]

qk = σ
2
k qk. (41)

The matrix ΩΩΩ is a diagonal matrix of eigenfrequencies for the perfectly elastic Earth; qk is the

kth column of the transformation matrix Q; σk is the complex eigenfrequency of the kth anelastic

mode; and V(σ) is an anelastic potential energy matrix that is a functional of products of the elastic

eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave

nature of the earth free oscillation problem leads to the choice of the frequency as the dependent

variable. Because the elastic moduli depend nonlinearly on frequency, the problem, Eq. (41), for

the complex eigenfrequencies and eigenvectors is nonlinear. The choice of wavenumber as the

independent variable for the traveling wave problem leads to the linear problem we have derived

above, Eq.(40). The nonlinear frequency dependence is contained in the elements of the A, B, and

C matrices of Eq.(29), Eq(30), and Eq.(31), respectively.

We have also derived similar results for the SH problem. We form the composition

∂z(bT
n ΞΞΞcn ) = bT

n
[

MT
ΞΞΞ + ΞΞΞM̃

]
cn. (42)

As definitions of b and M, we take Eqs. (16) and (30) for SH motion. For M̃ we take Eq. (17)

with k replaced by κ , and N and L replaced by Ñ and L̃, respectively. Likewise the definition of c

follows from Eq. (30) and (31). Upon integrating Eq. (42) with respect to z from 0 to−∞, carrying

out some additional algebra, and again setting ω2 = σ2, we arrive at

(
k2

nI − κ
2
n N − L

)
qn = κ

2
n qn (43)
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where

N =

[∫ 0

−∞

Ny1
(n)2

dz
]−1 ∫ 0

−∞

δNy1
(n)y1

(m) dz (44)

and

L =

[∫ 0

−∞

Ny1
(n)2

dz
]−1 ∫ 0

−∞

δL
dy1

(n)

dz
dy1

(m)

dz
dz. (45)

The two terms δL and δN are the complex frequency dependent parts of the two shear moduli L̃

and Ñ. The anelasticity tensor c̃i jkl for a linear viscoelastic material can be written

c̃i jkl = ci jkl + δci jkl(ω). (46)

Substituting the appropriate expressions from Eq.(46) for L̃ and Ñ, we were able to separate the

perfectly elastic part from the frequency dependent anelastic part for the SH problem. There is

no restriction on the magnitude of δL and δN, making it possible to simplify Eqs.(38)-(39). It is

possible to also write the complex moduli Ã, C̃, and F̃ as well for the P-SV problem, Eqs.(29)-(31),

but this leads to algebraic complexity that is not particularly illuminating. So this has not been

done for the P-SV problem. Also note that Eq. (43) is linear in κn
2. A final point is that both Eq.

(40) and Eq. (43) are infinite eigenvalue equations. Any practical implementation will necessarily

employ a truncated mode set.

4. Discussion and Conclusions

Advantages of using the elastic eigenfunctions as a basis for the anelastic eigenfunctions are: 1.

The effect of anelasticity on individual modes can be examined in detail; 2. Although this paper

is explicitly for laterally homogenous problems, the effect of range dependent attenuation could

be studied by making the complex expansion coefficients range dependent. (Pannatoni (2011)

has published a coupled mode solution for a range dependent all-fluid acoustic model, which
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includes mode coupling due to attenuation.) If the environment is not geometrically range dependent

(laterally heterogeneous), we can employ the same elastic basis; 3. Used in conjunction with a

general range dependent coupled mode program, the propagation physics of a strongly laterally

heterogeneous dependent shallow water environment or regional Earth model can be studied in

detail. We have the ability to isolate the influence of the geometry, and different aspects of the

rheology of the medium on a propagating seismic or seismo-acoustic signal.

We derived equations Eq. (40) and Eq. (43) for the computation of anelastic surface-wave

eigenfunctions in transversely isotropic media by expressing them in terms of a linear complex

generalized eigenvalue equation for the P-SV system, and a linear eigenvalue equation for the SH

system. No perturbation theory is needed. The completeness of the elastic modes for the laterally

homogeneous Earth as a basis has been proved by Kirrmann (1995) for the case of a free surface and

rigid lower boundary, which is the locked mode approximation. The anelastic modes are useful for

modeling and characterizing seismo-acoustic signals propagating in a shallow water environment

or regional seismic phases characterized by high attenuation and transverse isotropy. This is an

environment where a perturbation treatment of the bottom or upper mantle properties applied to

mode summation signal synthesis, which has been shown by previous authors to lead to erroneous

results. The solution of equations (40) and (43) are used to represent the anelastic modes in terms

of the elastic modes, permitting a detailed analysis of the physics of strongly bottom interacting

acoustic propagation. The effects of transverse isotropy and attenuation, including attenuation

induced dispersion, are properly accounted for. Causality is assured by making sure the complex,

frequency dependent moduli satisfy the Kramers-Kronig relations. Stable, well-behaved numerical

algorithms exist for solving the complex generalized eigenvalue problem, even in cases where the

the matrices involved are near singular (Golub and Van Loan, 1989). The QZ method is suitable

for the generalized eigenvalue problem. Our next step is the numerical implementation of Eq.(40)

and Eq.(43). A suitable check would be a camparison with the results obtained from Ivansson and

Karasalo(1992, 1993) and Ivansson’s (1997) direct algorithm.
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